Abstract

Blurring of a photographic image by a wrong focus can be modeled by convolution. This paper discusses some points for the inverse operation with particular interest on the set of integers \(\mathbb{Z} \).

MSC2010: 65R30 (Improperly posed problems), 94A08 (Image processing).

1 Introduction.

Briefly a problem is ill-posed if there is a “bad” transformation \(A \) (“signal” \(\mapsto \) “blurred signal” for example) and one tries recovering the preimage of any \(y \), expecting to find an \(x \) such that \(Ax = y \). Difficulties could lie in: \(A \) is not one-to-one, or very different initial points may have very closed image (see Section 4), or (frequently this happens simultaneously) the map \(A \) is not onto.

Photographic images often present blurring, for example due to a wrong focus setting. Several other defects due to different causes are possible (cf. [Be]). Defect of focus is roughly equivalent to convolution of the image source with the brightness of the image of one point light in 0\(^1\). Numerous papers use the word deconvolution. Is it more than a word? Surely this belongs to the class of ill-posed problems (see [TA, Ch.IV pp.91–115]).

Several authors add stochastic component. There is a clear reason: when the map “signal” \(\mapsto \) “blurred signal” is not onto (this may highly depends on the functional space under consideration), finding a preimage to any point

\[\text{The density could be } k1_{B(0,r)} \text{ where } r > 0 \text{ is a radius and } k = (\pi r^2)^{-1}. \]

1 Question in dimension 2 and with the Euclidean norm: is it a zero divisor for convolution? We will see (Section 2) that in dimension 1 we do have a zero divisor.

1
in the target space of A needs some stochastic adjustment. Many papers speak of \textit{bayesian}. The signal itself can be seen as a trajectory of a stochastic process\footnote{Cf. the Wiener filter, I learned in R. Pallu de La Barrière [PB].}. \textit{Robustness} may also be refered to because the perturbation is not exactly known. A lot of recent papers use \textit{wavelets}\footnote{Using the Fourier transform is tempting but disappoitting.}.

Literature is prolific and difficult to understand. The words \textit{mask}, \textit{sharpening} are keys on the Net, as also \textit{filtration} and \textit{denoising}. An astonishing algorithm is due to P.H. van Cittert: see Wikipedia (German) [J, VC]. A paper with an heralding title, which quotes van Cittert, and illustrate the interest to the question outside of the purely mathematical world is [Bi].

We will give some calculi with the space \mathbb{Z} (dimension 1) and refind the threshold $\frac{1}{2}$ highlighted by C. Duval [D] (see Section 6).

I thank Manuel Monteiro Marques for his constant encouragements and Paul Raynaud de Fitte for his invaluable bibliographical helps.

Convolution and Fourier transform have as framework \mathbb{R}^d (which is its own dual group), or \mathbb{Z}^d and its dual group\footnote{Cf. Fourier series.} \mathbb{T}^d (maybe the groups $\mathbb{Z}/n\mathbb{Z}$?). When μ and ν are bounded measures on \mathbb{R}^d, their convolution product, denoted by $\mu \ast \nu$, is the image (pushforward\footnote{Cf. the writing $\mu \ast \nu = S_\#(\mu \otimes \nu)$ where S denotes the sum.}) by $(x, y) \mapsto x + y$ of their product $\mu \otimes \nu$ (cf. the sum of independant random variables in Probability). For Lebesgue integrable functions on \mathbb{R}^d, their convolution product is classically

$$ f \ast g : x \mapsto \int_{\mathbb{R}^d} f(x - y) g(y) \, dy. $$

The excellent paper by K.A. Ross [R] examines mainly convolution of L^1 functions.

Concerning convolution of distributions, L. Schwartz begins by the case of two when one of them has compact support. Then he proves [S, vol.2, Th.VII p.14] that the convolution of a finite number of distributions which have all, except one, compact supports is associative et commutative and then [S, vol.2, ch.6 §5 p.26] moves to more general situations. He proves that, in dimension $d = 1$, the \textit{convolution algebra} \mathcal{D}'_+ (the set of distributions with supports limited on left) has no zero divisors [S, vol.2, ch.6 Th.XIV p.29].
The same result holds for $D'_{\mathbb{R}}$ (the set of distributions with supports limited on right).

The unit mass in 0, δ_0, is always a neutral element and convolution by δ_x ($x \in \mathbb{R}^d$) amounts to translation by the vector x. Uniqueness of a possible inverse holds when one works in a subspace where associativity holds (see (1) hereafter). We will see cases where several inverses do coexist (Theorem 1).

Let us show that δ_x has as unique inverse δ_{-x} (who doubts it?). Suppose H is another distribution inverse of δ_x. Among the three distributions δ_x, δ_{-x} and H, two have compact support, hence associativity holds and

$$(1) \quad H = H * \delta_0 = H * (\delta_x * \delta_{-x}) = (H * \delta_x) * \delta_{-x} = \delta_0 * \delta_{-x} = \delta_{-x}.$$

When dealing with \mathbb{Z} and measures such as $\mu = \sum_{n \in \mathbb{Z}} x_n \delta_n$, or $\nu = \sum_{n \in \mathbb{Z}} y_n \delta_n$, the point of view of convolution is to consider the function $n \mapsto x_n$ defined on \mathbb{Z} (resp. $n \mapsto y_n$). The convolution of μ and ν returns to the convolution $z := x * y$ where $z_n = \sum_{k \in \mathbb{Z}} x_{n-k} y_k$. Next h will equivalently denote a measure or a function on \mathbb{Z}.

Examples of zero divisors.

1) With \mathbb{R} let consider the *gate function* $h = 1_{[-1,1)}$. Then

$$h * 1_{\cup_{n \in \mathbb{Z}} [2n,2n+1]} = h * \left(\frac{1}{2} 1_{\mathbb{R}} \right)$$

hence $f \mapsto h * f$ is not injective on $L^\infty(\mathbb{R})$, and one has a zero divisor:

$$h * \left(1_{\cup_{n \in \mathbb{Z}} [2n,2n+1]} - \frac{1}{2} 1_{\mathbb{R}} \right) = 0.$$

2) With \mathbb{Z}, take $h := \frac{1}{2} \delta_0 + \frac{1}{2} \delta_1$ or $h := \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_0 + \frac{1}{4} \delta_1$. Then there holds

$$(2) \quad h * 1_{2\mathbb{Z}} = h * \left(\frac{1}{2} 1_{\mathbb{Z}} \right),$$

hence $f \mapsto h * f$ is not injective on $\ell^\infty(\mathbb{Z})$, and one has the zero divisor:

$$h * \left(1_{2\mathbb{Z}} - \frac{1}{2} 1_{\mathbb{Z}} \right) = 0.$$
3 Convolution and inverse, particular cases.

Let us begin by

\[h = a \delta_0 + (1 - a) \delta_1 \quad (a \in]0, 1[) \] (a kind of “gate function”).

Lemma 1 Let \(a \in]0, 1[\) and \(h = a \delta_0 + (1 - a) \delta_1 \). Then an inverse of \(h \) in \(\mathcal{D}'_+ (\mathbb{R}) \) is

\[J = \frac{1}{a} \delta_0 - \frac{1 - a}{a^2} \delta_1 + \frac{(1 - a)^2}{a^3} \delta_2 + \ldots \] (the limit is for the weak topology \(\sigma (\mathcal{D}', \mathcal{D}) \))

Proof. Indeed

\[
h \ast \frac{1}{a} \sum_{n=0}^{k} \left[- \frac{1 - a}{a} \right]^n \delta_n = \delta_0 + (-1)^k \left[1 - \frac{1}{a} \right]^{k+1} \delta_{k+1} \rightarrow \delta_0
\]

because for any \(\alpha_n, \alpha_n \delta_n \rightarrow 0 \) in the topology \(\sigma (\mathcal{D}', \mathcal{D}) \) when \(n \rightarrow \infty \). □

Lemma 2 An inverse of \(h \) in \(\mathcal{D}'_+ (\mathbb{R}) \) is

\[\frac{1}{1 - a} \delta_{-1} - \frac{a}{(1 - a)^2} \delta_{-2} + \frac{a^2}{(1 - a)^3} \delta_{-3} - \frac{a^3}{(1 - a)^4} \delta_{-4} + \ldots \] (the limit still for \(\sigma (\mathcal{D}', \mathcal{D}) \))

Proof. One can write

\[h = (1 - a) \delta_1 \ast (\delta_0 + \frac{a}{1 - a} \delta_{-1}) \]

Then \((1 - a) \delta_1 \) admits the inverse \(\frac{1}{1 - a} \delta_{-1} \) and for the second factor one can develop “on left” as in the preceding lemma. □

Theorem 1 The distribution \(\frac{1}{2} (\delta_0 + \delta_1) \) on \(\mathbb{R} \) admits several inverses in \(\mathcal{D}' \) with respect to convolution (the limits are for \(\sigma (\mathcal{D}', \mathcal{D}) \)):

\[J_1 = 2 \lim_{k \rightarrow \infty} \sum_{n=0}^{k} (-1)^n \delta_n = 2 (\delta_0 - \delta_1 + \delta_2 - \delta_3 + \ldots) , \]

\[^6 \text{Cf. the known formula} \ (1 + x)^{-1} = 1 - x + x^2 - x^3 + \ldots \text{for} \ x \in \mathbb{R} .\]
\[J_2 = 2 \lim_{k \to \infty} \sum_{n=1}^{k} (-1)^{n-1} \delta_{-n} = 2 (\delta_{-1} - \delta_{-2} + \delta_{-3} - \delta_{-4} + \ldots) \]

and specially \(H = \frac{1}{2} (J_1 + J_2) \) i.e.
\[(J) \quad H = \ldots - \delta_{-4} + \delta_{-3} - \delta_{-2} + \delta_{-1} + \delta_0 - \delta_1 + \delta_2 - \delta_3 + \ldots \]

Moreover for any \(f \in \mathbb{R}^{(\mathbb{Z})} \) (the space of real sequences on \(\mathbb{Z} \) with compact supports)
\[(f * h) * H = f. \]

Remarks. For any \(\lambda \in \mathbb{R} \), \(\lambda J_1 + (1 - \lambda) J_2 \) is also an inverse of \(h \). And \(J_1 - J_2 \) forms with \(h \) a couple of zero divisors.

Proof. The lemmas imply the assertions about inverses. The last formula follows from the fact that \(f \) and \(h \) have compact supports, hence \((f * h) * H = f * (h * H) = f * \delta_0. \)

Now we turn to a measure carried by \(\{ -1, 0, 1 \} \), still positive with total mass 1. With the parameter \(a \in \left] \frac{1}{2}, 1 \right[\)
\[(7) \quad h := \frac{1-a}{2} \delta_{-1} + a \delta_0 + \frac{1-a}{2} \delta_1 \]

or, with the parameter \(b = \frac{1-a}{2} \in \left] 0, \frac{1}{4} \right[\) which will be often better suited,
\[h := b \delta_{-1} + (1 - 2b) \delta_0 + b \delta_1. \]

Lemma 3 Let \(b \in \left] 0, \frac{1}{4} \right[\). Then
\[\lambda = \frac{1}{2b} \left[2b - 1 + \sqrt{1 - 4b} \right] \]
belongs to \(]-1, 0[\), tends to 0 if \(b \to 0 \), and tends to \(-1 \) if \(b \to 1/4 \).

Proof. Elementarily \(\lambda \) is a root of the equation \(\lambda^2 + \frac{1-2b}{b} \lambda + 1 = 0 \). One has \(\lambda \leq 0 \) because
\[2b - 1 + \sqrt{1 - 4b} \leq 0 \iff \sqrt{1 - 4b} \leq 1 - 2b \]
\[\iff 1 - 4b \leq (1 - 2b)^2 \]
\[\iff 1 - 4b \leq 1 - 4b + 4b^2 \]
and \(\lambda > -1 \) because
\[2b - 1 + \sqrt{1 - 4b} > -2b \iff \sqrt{1 - 4b} > 1 - 4b \]
which holds, since on \(]0, 1[\), \(\sqrt{x} \) is > \(x \). The convergences are easy. □
Theorem 2 Let \(h \) given by (7)

\[
h := \frac{1-a}{2} \delta_{-1} + a \delta_0 + \frac{1-a}{2} \delta_1.
\]

Let \(c \) defined by

\[
\forall n \in \mathbb{Z}, c_n = \lambda^{|n|} \left(\sqrt{1-4b} \right)^{-1}.
\]

The \(c_n \) are alternatively \(> 0 \) and \(< 0 \) and \(\sum_{n \in \mathbb{Z}} c_n = 1 \). The measure (or sequence) \(c \) is an inverse of \(h \), that is \(h \ast c = \delta_0 \). Moreover for any \(f \in \ell^\infty(\mathbb{Z}) \)

\[
(f \ast h) \ast c = f.
\]

Remark. Since \(-1 < \lambda < 0\), \(c \) considered as a function oscillates as the famous cardinal sine function: \(\text{sinc} x = \frac{\sin x}{x} \) (cf. also the mexican hat). This seems quite general. For another comment see Section 6.

Proof. 1) One has

\[
\sum_{n \in \mathbb{Z}} c_n = c_0 + 2 \sum_{n \geq 1} c_n
\]

\[
= c_0 \left(1 + 2 \sum_{n \geq 1} \lambda^n \right)
\]

\[
= c_0 \left(1 + 2 \frac{\lambda}{1-\lambda} \right)
\]

\[
= \frac{1}{\sqrt{1-4b}} \frac{1+\lambda}{1-\lambda}
\]

\[
= \frac{1}{\sqrt{1-4b}} \frac{4b - 1 + \sqrt{1-4b}}{1 - \sqrt{1-4b}}
\]

\[
= 1.
\]

2) Firstly

\[
(h \ast c)_n = \sum_{i \in \mathbb{Z}} h(n-i) c_i = \sum_{i \in \mathbb{Z}} h(i) c_{n-i}.
\]
For \(n = 0 \) this gives

\[
(h \ast c)_0 = h(-1) c_1 + h(0) c_0 + h(1) c_{-1}
\]

\[
= b \frac{\lambda}{\sqrt{1 - 4b}} + \frac{1}{\sqrt{1 - 4b}} + b \frac{\lambda}{\sqrt{1 - 4b}}
\]

\[
= \frac{1}{\sqrt{1 - 4b}} [2b \lambda + 1 - 2b]
\]

\[
= \frac{1}{\sqrt{1 - 4b}} \left[2b - 1 + \sqrt{1 - 4b} + 1 - 2b \right]
\]

\[
= 1.
\]

For \(n \geq 1 \) this gives

\[
(h \ast c)_0 = h(-1) c_{n+1} + h(0) c_n + h(1) c_{n-1}
\]

\[
= b (c_{n-1} + c_{n+1}) + (1 - 2b) c_n
\]

\[
= c_0 \left[b \lambda^{n-1} + b \lambda^{n+1} + (1 - 2b) \lambda^n \right]
\]

\[
= \frac{\lambda^{n-1}}{\sqrt{1 - 4b}} \left[b + (1 - 2b) \lambda + b \lambda^2 \right]
\]

\[
= 0.
\]

because \(\lambda^2 + \frac{1-2b}{b} \lambda + 1 = 0 \).

3) As for \((f \ast h) \ast c\), the functions are respectively, bounded for \(f \), with compact support for \(h \), integrable for \(c \) (convergent sum). So associativity holds. \(\square \)

4 Illustration (pictures on \(\mathbb{Z} \)).

A monochrome photographic image can be modeled by a (measurable) function \(f : \mathbb{R}^2 \rightarrow [0, 1] \), \(f \) measuring the brightness.

We will expose some examples with \(f : \mathbb{Z} \rightarrow [0, 1] \), that is a one-dimensional picture formed from pixels. So the basic space is \(\ell^\infty(\mathbb{Z}) \). Another natural space is \(\ell^p(\mathbb{Z}) \) that is the space of real sequences on \(\mathbb{Z} \) with compact supports (this is Bourbaki’s notation); it is a natural space since pictures do have compact supports. Other vector spaces could be considered in abstract studies (\(p \in]1, \infty[\)):

\[
\ell^1(\mathbb{Z}) \subset \ell^p(\mathbb{Z}) \subset c_0(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z}) \subset \mathbb{R}^\mathbb{Z}.
\]
As measures spaces, $\mathbb{R}^\mathbb{Z} \sim \mathcal{M}(\mathbb{Z})$ (the space of all measures on \mathbb{Z}) and $\ell^1(\mathbb{Z}) \sim \mathcal{M}^b(\mathbb{Z})$ (the space of all bounded measures on \mathbb{Z}).

Let us consider the linear map

$$A : \mathbb{R}^\mathbb{Z} \rightarrow \mathbb{R}^\mathbb{Z}$$

where

$$(x_n)_{n \in \mathbb{Z}} \mapsto (y_n)_{n \in \mathbb{Z}} \quad \text{where} \quad y_n = \frac{1}{2} (x_{n-1} + x_n).$$

Applying A is the same thing as convolution by the “gate function” $h = \frac{1}{2} (\delta_0 + \delta_1)$. It is not one-to-one, its kernel being (elementary verification)

$$\ker A = \{ \lambda ((-1)^n)_{n \in \mathbb{Z}} : \lambda \in \mathbb{R} \} = \{ \lambda (1_{2\mathbb{Z}} - 1_{2\mathbb{Z}+1}) : \lambda \in \mathbb{R} \}.$$

This kernel expression holds too with the space $\ell^\infty(\mathbb{Z})$. But by restricting the linear transformation A to $c_0(\mathbb{Z})$ or to a smaller subspace, the kernel becomes $\{0\}$ and the map $x \mapsto Ax$ is then one-to-one.

Here comes our main observations:

— $x = \frac{1}{2} 1_\mathbb{Z}$ is perfect grey;
— $x_n = 1$ if n is even, 0 otherwise is macroscopically grey;
— the same ones on, for example $\{0, \ldots, 999\}$, will reveal to have quite different properties.

Pictures belonging to $\ell^\infty(\mathbb{Z})$. Let the convolution by h be the blurring action. Then $1_{2\mathbb{Z}} * h$ and $\frac{1}{2} 1_\mathbb{Z}$ ($= [\frac{1}{2} 1_\mathbb{Z}] * h$) are identical. Inversion of A and deconvolution are impossible.

Pictures belonging to $\mathbb{R}(\mathbb{Z})$. Then A is one-to-one (its kernel, $\ker A$, vanishes). If $x \in \mathbb{R}(\mathbb{Z})$ the blurred picture $h * x$ has also compact support and convolution with H defined in (6) is possible. Thus

$$(8) \quad (x * h) * H = x * (h * H) = x * \delta_0 = x.$$

But some different x can give very close blurred pictures. Precisely take

$$x_n = \begin{cases} 1 & \text{if } n \text{ is even and } 0 \leq n \leq 998 \\ 0 & \text{otherwise} \end{cases}$$

(there are 500 pixels with value 1). The blurring gives the picture $y = h * x$ with

$$(9) \quad y_n = \frac{1}{2} x_n + \frac{1}{2} x_{n-1} = \frac{1}{2} \quad \text{for } 0 \leq n \leq 999 \text{ and } 0 \text{ otherwise}$$

(there are 1000 pixels with value $1/2$).
But the almost perfect grey picture $\tilde{x} = \frac{1}{2} \mathbf{1}_{(0,999)}$ (it is grey on a large interval) is blurred into \tilde{y} where

\begin{equation}
\tilde{y}_n = \begin{cases}
\frac{1}{2} & \text{if } 1 \leq n \leq 999 \\
\frac{1}{4} & \text{if } n = 0 \text{ or } 1000 \\
0 & \text{otherwise}
\end{cases}
\end{equation}

which is very close to y obtained in (9). This illustrates the ill-posedness of the inversion problem\(^7\). Note also that despite the possibility of deconvolution (8), H is an unbounded measure with unbounded support. This inversion is in some sense *academic*.

Practitioners use high-pass filters under the form of convolution with a small supported *mask* (look on the Net at “sharpening”), for example in dimension 2 a measure supported by $\{-1,0,1\} \times \{-1,0,1\}$ as maybe

\[
\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}
\quad \text{or} \quad
\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 9 & -1 \\
-1 & -1 & -1
\end{array}
\]

the sum of all coefficients being 1.

5 Exercices.

When the picture x or \tilde{x} belong to $\mathbb{R}^{(2)}$, deconvolution works theoretically perfectly.

Case of macroscopic grey. As for $y = A(x)$ given in (9) the formula

$$\sum_{k \in \mathbb{Z}} y_k H_{n-k}$$

(H_m is the m-th term of H defined in (6)) gives exactly x_n. This could be an exercice. The inverse J_1 (cf. (5)) can equally do the job, with

$$\sum_{k \in \mathbb{Z}} y_k J_{1,n-k} \quad \text{where} \quad J_{1,m} = 2 (-1)^m \text{ for } m \geq 0.$$\(^7\) In this example there is a bad behavior as analysed in *sampling theory*.
Case of almost perfect grey. As for $\tilde{y} = A(\tilde{x})$ given in (10) the formulas

$$\sum_{k \in \mathbb{Z}} \tilde{y}_k H_{n-k} \text{ or } \sum_{k \in \mathbb{Z}} \tilde{y}_k J_{1,n-k}$$

give exactly \tilde{x}_n.

6 About the threshold $1/2$.

In [D] C. Duval studies convolution by $a \delta_0 + \alpha g(x) \, dx$ imposing $a > \frac{1}{2}$.

We refinded this in Lemma 1 where the multiplicative factor $\frac{1-a}{a}$ has absolute value < 1 if and only if $a > \frac{1}{2}$.

We refinded again this in Theorem 2 where the multiplicative factor λ belongs to $]1,0[$ and badly tends to -1 when $a \downarrow \frac{1}{2}$ (equivalently $b \uparrow \frac{1}{2}$).

References

[Be] Bergounioux, M., Quelques méthodes mathématiques pour le traitement d’image, Cours de DEA, Université d’Orléans (2008) 110 pages.
https://cel.archives-ouvertes.fr/cel-00125868v4/document

https://hal.archives-ouvertes.fr/jpa-00244050/document

https://hal.archives-ouvertes.fr/hal-01199599/document

https://de.wikipedia.org/wiki/Van-Cittert-Dekonvolution

