Does deconvolution exist?

Michel Valadier

October 23th 2018

Abstract

Blurring of a photographic image by a wrong focus can be modeled by convolution. This paper discusses some points for the inverse operation with particular interest on the set of integers \mathbb{Z} .

MSC2010: 65R30 (Improperly posed problems), 94A08 (Image processing).

1 Introduction.

Briefly a problem is *ill-posed* if there is a "bad" transformation A ("signal" \mapsto "blurred signal" for example) and one tries recovering the preimage of any y, expecting to find an x such that Ax = y. Difficulties could lie in: A is not one-to-one, or very different initial points may have very closed image (see Section 4), or (frequently this happens simultaneously) the map A is not onto.

Photographic images often present blurring, for example due to a wrong focus setting. Several other defects due to different causes are possible (cf. [Be]). Defect of focus is roughly equivalent to convolution of the image source with the brightness of the image of one point light in 0^1 . Numerous papers use the word *deconvolution*. Is it more than a word? Surely this belongs to the class of ill-posed problems (see [TA, Ch.IV pp.91–115]).

Several authors add stochastic component. There is a clear reason: when the map "signal" \mapsto "blurred signal" is not onto (this may highly depends on the functional space under consideration), finding a preimage to any point

¹ The density could be $k\mathbf{1}_{B(0,r)}$ where r>0 is a radius and $k=(\pi r^2)^{-1}$. Question in dimension 2 and with the Euclidean norm: is it a zero divisor for convolution? We will see (Section 2) that in dimension 1 we do have a zero divisor.

in the target space of A needs some stochastic adjustment. Many papers speak of bayesian. The signal itself can be seen as a trajectory of a stochastic process². Robustness may also be referred to because the perturbation is not exactly known. A lot of recent papers use $wavelets^3$.

Literature is prolific and difficult to understand. The words *mask*, *sharp-ening* are keys on the Net, as also *filtration* and *denoising*. An astonishing algorithm is due to P.H. van Cittert: see Wikipedia (German) [J, VC]. A paper with an heralding title, which quotes van Cittert, and illustrate the interest to the question outside of the purely mathematical world is [Bi].

We will give some calculi with the space \mathbb{Z} (dimension 1) and refind the threshold $\frac{1}{2}$ highlighted by C. Duval $[\mathbb{D}]$ (see Section 6).

I thank Manuel Monteiro Marques for his constant encouragements and Paul Raynaud de Fitte for his invaluable bibliographical helps.

2 Convolution. Notations. Zero divisors.

Convolution and Fourier transform have as framework \mathbb{R}^d (which is its own dual group), or \mathbb{Z}^d and its dual group⁴ \mathbb{T}^d (maybe the groups $\mathbb{Z}/n\mathbb{Z}$?). When μ and ν are bounded measures on \mathbb{R}^d , their convolution product, denoted by $\mu * \nu$, is the image (pushforward⁵) by $(x,y) \mapsto x + y$ of their product $\mu \otimes \nu$ (cf. the sum of independent random variables in Probability). For Lebesgue integrable functions on \mathbb{R}^d , their convolution product is classically

$$f * g : x \mapsto \int_{\mathbb{R}^d} f(x - y) g(y) dy$$
.

The excellent paper by K.A. Ross [R] examines mainly convolution of L^1 functions.

Concerning convolution of distributions, L. Schwartz begins by the case of two when one of them has compact support. Then he proves [S, vol.2, Th.VII p.14] that the convolution of a finite number of distributions which have all, except one, compact supports is associative et commutative and then [S, vol.2, ch.6 §5 p.26] moves to more general situations. He proves that, in dimension d=1, the convolution algebra \mathcal{D}'_+ (the set of distributions with supports limited on left) has no zero divisors [S, vol.2, ch.6 Th.XIV p.29].

² Cf. the Wiener filter, I learned in R. Pallu de La Barrière [PB].

 $^{^3}$ Using the Fourier transform is tempting but disappointing.

⁴ Cf. Fourier series.

⁵ Cf. the writing $\mu * \nu = S_{\#}(\mu \otimes \nu)$ where S denotes the sum.

The same result holds for \mathcal{D}'_{-} (the set of distributions with supports limited on right).

The unit mass in 0, δ_0 , is always a neutral element and convolution by δ_x $(x \in \mathbb{R}^d)$ amounts to translation by the vector x. Uniqueness of a possible inverse holds when one works in a subspace where associativity holds (see (1) hereafter). We will see cases where several inverses do coexist (Theorem 1).

Let us show that δ_x has as unique inverse δ_{-x} (who doubts it?). Suppose H is another distribution inverse of δ_x . Among the three distributions δ_x , δ_{-x} and H, two have compact support, hence associativity holds and

(1)
$$H = H * \delta_0 = H * (\delta_x * \delta_{-x}) = (H * \delta_x) * \delta_{-x} = \delta_0 * \delta_{-x} = \delta_{-x}$$
.

When dealing with \mathbb{Z} and measures such as $\mu = \sum_{n \in \mathbb{Z}} x_n \, \delta_n$, or $\nu = \sum_{n \in \mathbb{Z}} y_n \, \delta_n$, the point of view of convolution is to consider the function $n \mapsto x_n$ defined on \mathbb{Z} (resp. $n \mapsto y_n$). The convolution of μ and ν returns to the convolution z := x * y where $z_n = \sum_{k \in \mathbb{Z}} x_{n-k} \, y_k$. Next h will equivalently denote a measure or a function on \mathbb{Z} .

Examples of zero divisors.

1) With \mathbb{R} let consider the gate function $h = \mathbf{1}_{[-1,1]}$. Then

$$h * \mathbf{1}_{\bigcup_{n \in \mathbb{Z}}[2n,2n+1]} = h * \left(\frac{1}{2}\mathbf{1}_{\mathbb{R}}\right)$$

hence $f \mapsto h * f$ is not injective on $L^{\infty}(\mathbb{R})$, and one has a zero divisor:

$$h * \left(\mathbf{1}_{\bigcup_{n \in \mathbb{Z}}[2n,2n+1]} - \frac{1}{2} \mathbf{1}_{\mathbb{R}} \right) = 0.$$

2) With \mathbb{Z} , take $h := \frac{1}{2} \delta_0 + \frac{1}{2} \delta_1$ or $h := \frac{1}{4} \delta_{-1} + \frac{1}{2} \delta_0 + \frac{1}{4} \delta_1$. Then there holds

(2)
$$h * \mathbf{1}_{2\mathbb{Z}} = h * \left(\frac{1}{2}\mathbf{1}_{\mathbb{Z}}\right),$$

hence $f \mapsto h * f$ is not injective on $\ell^{\infty}(\mathbb{Z})$, and one has the zero divisor:

$$h * \left(\mathbf{1}_{2\mathbb{Z}} - \frac{1}{2}\mathbf{1}_{\mathbb{Z}}\right) = 0.$$

3 Convolution and inverse, particular cases.

Let us begin by $h = a \delta_0 + (1 - a) \delta_1$ $(a \in [0, 1])$ (a kind of "gate function").

Lemma 1 Let $a \in]0,1[$ and $h = a \delta_0 + (1-a) \delta_1$. Then an inverse of h in $\mathcal{D}'_+(\mathbb{R})$ is⁶

(3)
$$J = \frac{1}{a}\delta_0 - \frac{1-a}{a^2}\delta_1 + \frac{(1-a)^2}{a^3}\delta_2 + \dots$$

(the limit is for the weak topology $\sigma(\mathcal{D}', \mathcal{D})$)

PROOF. Indeed

$$h * \frac{1}{a} \sum_{n=0}^{k} \left[-\frac{1-a}{a} \right]^n \delta_n = \delta_0 + (-1)^k \left[\frac{1-a}{a} \right]^{k+1} \delta_{k+1}$$
$$\to \delta_0$$

because for any α_n , $\alpha_n \delta_n \to 0$ in the topology $\sigma(\mathcal{D}', \mathcal{D})$ when $n \to \infty$. \square

Lemma 2 An inverse of h in $\mathcal{D}'_{-}(\mathbb{R})$ is

(4)
$$\frac{1}{1-a}\delta_{-1} - \frac{a}{(1-a)^2}\delta_{-2} + \frac{a^2}{(1-a)^3}\delta_{-3} - \frac{a^3}{(1-a)^4}\delta_{-4} + \dots$$

(the limit still for $\sigma(\mathcal{D}', \mathcal{D})$)

PROOF. One can write

$$h = (1 - a) \delta_1 * (\delta_0 + \frac{a}{1 - a} \delta_{-1}).$$

Then $(1-a) \, \delta_1$ admits the inverse $\frac{1}{1-a} \, \delta_{-1}$ and for the second factor one can develop "on left" as in the preceding lemma. \square

Theorem 1 The distribution $\frac{1}{2}(\delta_0 + \delta_1)$ on \mathbb{R} admits several inverses in \mathcal{D}' with respect to convolution (the limits are for $\sigma(\mathcal{D}', \mathcal{D})$):

(5)
$$J_1 = 2 \lim_{k \to \infty} \sum_{n=0}^{k} (-1)^n \delta_n = 2 \left(\delta_0 - \delta_1 + \delta_2 - \delta_3 + \dots \right),$$

⁶ Cf. the known formula $(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots$ for $x \in \mathbb{R}$.

$$J_2 = 2 \lim_{k \to \infty} \sum_{n=1}^{k} (-1)^{n-1} \delta_{-n} = 2 \left(\delta_{-1} - \delta_{-2} + \delta_{-3} - \delta_{-4} + \dots \right)$$

and specially $H = \frac{1}{2}(J_1 + J_2)$ i.e.

(6)
$$H = \dots - \delta_{-4} + \delta_{-3} - \delta_{-2} + \delta_{-1} + \delta_0 - \delta_1 + \delta_2 - \delta_3 + \dots$$

Moreover for any $f \in \mathbb{R}^{(\mathbb{Z})}$ (the space of real sequences on \mathbb{Z} with compact supports)

$$(f*h)*H=f.$$

REMARKS. For any $\lambda \in \mathbb{R}$, $\lambda J_1 + (1 - \lambda) J_2$ is also an inverse of h. And $J_1 - J_2$ forms with h a couple of zero divisors.

PROOF. The lemmas imply the assertions about inverses. The last formula follows from the fact that f and h have compact supports, hence $(f*h)*H = f*(h*H) = f*\delta_0$. \square

Now we turn to a measure carried by $\{-1,0,1\}$, still positive with total mass 1. With the parameter $a \in \left[\frac{1}{2},1\right[$

(7)
$$h := \frac{1-a}{2} \delta_{-1} + a \delta_0 + \frac{1-a}{2} \delta_1$$

or, with the parameter $b = \frac{1-a}{2} \in \left]0, \frac{1}{4}\right[$ which will be often better suited,

$$h := b \, \delta_{-1} + (1 - 2b) \, \delta_0 + b \, \delta_1$$
.

Lemma 3 Let $b \in \left]0, \frac{1}{4}\right[$. Then

$$\lambda = \frac{1}{2b} \left[2b - 1 + \sqrt{1 - 4b} \right]$$

belongs to]-1,0[, tends to 0 if $b \rightarrow 0$, and tends to -1 if $b \rightarrow 1/4$.

PROOF. Elementarily λ is a root of the equation $\lambda^2 + \frac{1-2b}{b}\lambda + 1 = 0$. One has $\lambda \leq 0$ because

$$2b - 1 + \sqrt{1 - 4b} \le 0 \Longleftrightarrow \sqrt{1 - 4b} \le 1 - 2b$$
$$\iff 1 - 4b \le (1 - 2b)^2$$
$$\iff 1 - 4b \le 1 - 4b + 4b^2$$

and $\lambda > -1$ because

$$2b-1+\sqrt{1-4b}>-2b\Longleftrightarrow\sqrt{1-4b}>1-4b$$

which holds, since on $]0,1[,\sqrt{x} \text{ is } > x.$ The convergences are easy. \Box

Theorem 2 Let h given by (7)

$$h := \frac{1-a}{2} \, \delta_{-1} + a \, \delta_0 + \frac{1-a}{2} \, \delta_1 \, .$$

Let c defined by

$$\forall n \in \mathbb{Z}, c_n = \lambda^{|n|} \left(\sqrt{1-4b}\right)^{-1}.$$

The c_n are alternatively > 0 and < 0 and $\sum_{n \in \mathbb{Z}} c_n = 1$. The measure (or sequence) c is an inverse of h, that is $h * c = \delta_0$. Moreover for any $f \in \ell^{\infty}(\mathbb{Z})$

$$(f*h)*c=f.$$

REMARK. Since $-1 < \lambda < 0$, c considered as a function oscillates as the famous cardinal sine function: $\sin x = \frac{\sin x}{x}$ (cf. also the mexican hat). This seems quite general. For another comment see Section 6.

PROOF. 1) One has

$$\sum_{n \in \mathbb{Z}} c_n = c_0 + 2 \sum_{n \ge 1} c_n$$

$$= c_0 \left(1 + 2 \sum_{n \ge 1} \lambda^n \right)$$

$$= c_0 \left(1 + 2 \frac{\lambda}{1 - \lambda} \right)$$

$$= \frac{1}{\sqrt{1 - 4b}} \frac{1 + \lambda}{1 - \lambda}$$

$$= \frac{1}{\sqrt{1 - 4b}} \frac{4b - 1 + \sqrt{1 - 4b}}{1 - \sqrt{1 - 4b}}$$

$$= 1.$$

2) Firstly

$$(h * c)_n = \sum_{i \in \mathbb{Z}} h(n-i) c_i = \sum_{i \in \mathbb{Z}} h(i) c_{n-i}.$$

For n = 0 this gives

$$(h * c)_0 = h(-1) c_1 + h(0) c_0 + h(1) c_{-1}$$

$$= b \frac{\lambda}{\sqrt{1 - 4b}} + (1 - 2b) \frac{1}{\sqrt{1 - 4b}} + b \frac{\lambda}{\sqrt{1 - 4b}}$$

$$= \frac{1}{\sqrt{1 - 4b}} [2b \lambda + 1 - 2b]$$

$$= \frac{1}{\sqrt{1 - 4b}} [2b - 1 + \sqrt{1 - 4b} + 1 - 2b]$$

$$= 1.$$

For $n \ge 1$ this gives

$$(h * c)_0 = h(-1) c_{n+1} + h(0) c_n + h(1) c_{n-1}$$

$$= b (c_{n-1} + c_{n+1}) + (1 - 2b) c_n$$

$$= c_0 [b \lambda^{n-1} + b \lambda^{n+1} + (1 - 2b) \lambda^n]$$

$$= \frac{\lambda^{n-1}}{\sqrt{1 - 4b}} [b + (1 - 2b)\lambda + b\lambda^2]$$

$$= 0$$

because $\lambda^2 + \frac{1-2b}{b}\lambda + 1 = 0$.

3) As for (f * h) * c, the functions are respectively, bounded for f, with compact support for h, integrable for c (convergent sum). So associativity holds. \square

4 Illustration (pictures on \mathbb{Z}).

A monochrome photographic image can be modelized by a (measurable) function $f: \mathbb{R}^2 \to [0, 1]$, f measuring the brightness.

We will expose some examples with $f: \mathbb{Z} \to [0,1]$, that is a one dimensional picture formed from pixels. So the basic space is $\ell^{\infty}(\mathbb{Z})$. Another natural space is $\mathbb{R}^{(\mathbb{Z})}$ that is the space of real sequences on \mathbb{Z} with compact supports (this is Bourbaki's notation); it is a natural space since pictures do have compact supports. Other vector spaces could be considered in abstract studies $(p \in]1, \infty[)$:

$$\mathbb{R}^{(\mathbb{Z})} \subset \ell^1(\mathbb{Z}) \subset \ell^p(\mathbb{Z}) \subset c_0(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z}) \subset \mathbb{R}^{\mathbb{Z}}.$$

As measures spaces, $\mathbb{R}^{\mathbb{Z}} \sim \mathcal{M}(\mathbb{Z})$ (the space of all measures on \mathbb{Z}) and $\ell^1(\mathbb{Z}) \sim \mathcal{M}^b(\mathbb{Z})$ (the space of all bounded measures on \mathbb{Z}).

Let us consider the linear map

$$A := \begin{cases} \mathbb{R}^{\mathbb{Z}} \longrightarrow \mathbb{R}^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} \mapsto (y_n)_{n \in \mathbb{Z}} & \text{where} \quad y_n = \frac{1}{2} (x_{n-1} + x_n). \end{cases}$$

Applying A is the same thing as convolution by the "gate function" $h = \frac{1}{2} (\delta_0 + \delta_1)$. It is not one-to-one, its kernel being (elementary verification)

$$\ker A = \left\{ \lambda \left((-1)^n \right)_{n \in \mathbb{Z}}; \ \lambda \in \mathbb{R} \right\} = \left\{ \lambda \left(\mathbf{1}_{2\mathbb{Z}} - \mathbf{1}_{2\mathbb{Z}+1} \right); \ \lambda \in \mathbb{R} \right\}.$$

This kernel expression holds too with the space $\ell^{\infty}(\mathbb{Z})$. But by restricting the linear transformation A to $c_0(\mathbb{Z})$ or to a smaller subspace, the kernel becomes $\{0\}$ and the map $x \mapsto Ax$ is then one-to-one.

Here comes our main observations:

- $x = \frac{1}{2} \mathbf{1}_{\mathbb{Z}}$ is perfect grey;
- $x_n = 1$ if n is even, 0 otherwise is macroscopically grey;
- the same ones on, for example $\{0, \ldots, 999\}$, will reveal to have quite different properties.

PICTURES BELONGING TO $\ell^{\infty}(\mathbb{Z})$. Let the convolution by h be the blurring action. Then $\mathbf{1}_{2\mathbb{Z}}*h$ and $\frac{1}{2}\mathbf{1}_{\mathbb{Z}}$ (= $[\frac{1}{2}\mathbf{1}_{\mathbb{Z}}]*h$) are identical. Inversion of A and deconvolution are impossible.

PICTURES BELONGING TO $\mathbb{R}^{(\mathbb{Z})}$. Then A is one-to-one (its kernel, ker A, vanishes). If $x \in \mathbb{R}^{(\mathbb{Z})}$ the blurred picture h * x has also compact support and convolution with H defined in (6) is possible. Thus

(8)
$$(x*h)*H = x*(h*H) = x*\delta_0 = x.$$

But some different x can give very closed blurred pictures. Precisely take

$$x_n = \begin{cases} 1 & \text{if } n \text{ is even and } 0 \le n \le 998\\ 0 & \text{otherwise} \end{cases}$$

(there are 500 pixels with value 1). The blurring gives the picture y = h * x with

(9)
$$y_n = \frac{1}{2}x_n + \frac{1}{2}x_{n-1} = \frac{1}{2}$$
 for $0 \le n \le 999$ and 0 otherwise

(there are 1000 pixels with value 1/2).

But the almost perfect grey picture $\tilde{x} = \frac{1}{2} \mathbf{1}_{\{0,999\}}$ (it is grey on a large interval) is blurred into \tilde{y} where

(10)
$$\tilde{y}_n = \begin{cases} \frac{1}{2} & \text{if } 1 \le n \le 999\\ \frac{1}{4} & \text{if } n = 0 \text{ or } 1000\\ 0 & \text{otherwise} \end{cases}$$

which is very closed to y obtained in (9). This illustrates the ill-posedness of the inversion problem⁷. Note also that despite the possibility of deconvolution (8), H is an unbounded measure with unbounded support. This inversion is in some sense academical.

Practitioners use high-pass filters under the form of convolution with a small supported mask (look on the Net at "sharpening"), for example in dimension 2 a measure supported by $\{-1,0,1\} \times \{-1,0,1\}$ as maybe

0	-1	0		-1	-1	-1
-1	5	-1	or	-1	9	-1
0	-1	0		-1	-1	-1

the sum of all coefficients being 1.

5 Exercices.

When the picture x or \tilde{x} belong to $\mathbb{R}^{(\mathbb{Z})}$, deconvolution works theoretically perfectly.

Case of macroscopic grey. As for y = A(x) given in (9) the formula

$$\sum_{k\in\mathbb{Z}} y_k \, H_{n-k}$$

 $(H_m \text{ is the } m\text{-th term of } H \text{ defined in (6)})$ gives exactly x_n . This could be an exercice. The inverse J_1 (cf. (5)) can equally do the job, with

$$\sum_{k \in \mathbb{Z}} y_k J_{1,n-k} \text{ where } J_{1,m} = 2 (-1)^m \text{ for } m \ge 0.$$

⁷ In this example there is a bad behavior as analysed in *sampling theory*.

Case of almost perfect grey. As for $\tilde{y}=A(\tilde{x})$ given in (10) the formulas

$$\sum_{k\in\mathbb{Z}} \tilde{y}_k H_{n-k} \quad \text{or} \quad \sum_{k\in\mathbb{Z}} \tilde{y}_k J_{1,n-k}$$

give exactly \tilde{x}_n .

6 About the threshold 1/2.

In [D] C. Duval studies convolution by $a \delta_0 + \alpha g(x) dx$ imposing $a > \frac{1}{2}$.

We refinded this in Lemma 1 where the multiplicative factor $-\frac{1-a}{a}$ has absolute value < 1 if and only if $a > \frac{1}{2}$.

We refinded again this in Theorem 2 where the multiplicative factor λ belongs to]-1,0[and badly tends to -1 when $a \searrow \frac{1}{2}$ (equivalently $b \nearrow \frac{1}{4}$).

References

- [Be] Bergounioux, M., Quelques méthodes mathématiques pour le traitement d'image, Cours de DEA, Université d'Orléans (2008) 110 pages. https://cel.archives-ouvertes.fr/cel-00125868v4/document
- [Bi] Biraud, Y.G., Les méthodes de déconvolution et leurs limitations fondamentales, Revue de Physique Appliquée 11 (1976) 203–214. https://hal.archives-ouvertes.fr/jpa-00244050/document
- [D] Duval, C., A note on a fixed point method for deconvolution, Statistics
 51 (2017) 347–362.
 https://hal.archives-ouvertes.fr/hal-01199599/document
- [J] Jähne, B., Digitale Bildverarbeitung, Springer, Berlin, 2005. From Wikipedia the deconvolution algorithm of Van Cittert is explained in this book, see:
 - https://de.wikipedia.org/wiki/Van-Cittert-Dekonvolution
- [PB] Pallu de La Barrière, R., Cours d'automatique théorique, Dunod, Paris, 1966.
- [R] Ross, K.A., A Trip from Classical to Abstract Fourier Analysis, Notice of the AMS **61** (2014) 1032–1038.

- [S] Schwartz, L., *Théorie des distributions, vol. 1 et 2*, Hermann, Paris, 1957 et 1959 (first edition 1950/51).
- [TA] Tikhonov, A.N. & Arsénine V.J., Méthodes de résolution des problèmes mal posés, Éditions Mir, Moscou, 1976 (firstly published in Russian in 1974; in English: A.N. Tikhonov & V.Y. Arsenin, Solutions of ill-posed problems, John Wiley & Sons, New York, 1977).
- [VC] van Cittert, P.H. Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II, Zeitschrift für Physik **69** (1931) 298–308.