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Abstract

Blurring of a photographic image by a wrong focus can be mod-
eled by convolution. This paper discusses some points for the inverse
operation with particular interest on the set of integers Z.

MSC2010: 65R30 (Improperly posed problems), 94A08 (Image process-
ing).

1 Introduction.

Briefly a problem is ill-posed if there is a “bad” transformation A (“signal”
7→ “blurred signal” for example) and one tries recovering the preimage of
any y, expecting to find an x such that Ax = y. Difficulties could lie in: A
is not one-to-one, or very different initial points may have very closed image
(see Section 4), or (frequently this happens simultaneously) the map A is
not onto.

Photographic images often present blurring, for example due to a wrong
focus setting. Several other defects due to different causes are possible
(cf. [Be]). Defect of focus is roughly equivalent to convolution of the image
source with the brightness of the image of one point light in 01. Numerous
papers use the word deconvolution. Is it more than a word? Surely this
belongs to the class of ill-posed problems (see [TA, Ch.IV pp.91–115]).

Several authors add stochastic component. There is a clear reason: when
the map “signal” 7→ “blurred signal” is not onto (this may highly depends on
the functional space under consideration), finding a preimage to any point

1 The density could be k1B(0,r) where r > 0 is a radius and k = (πr2)−1. Question in
dimension 2 and with the Euclidean norm: is it a zero divisor for convolution? We will
see (Section 2) that in dimension 1 we do have a zero divisor.
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in the target space of A needs some stochastic adjustment. Many papers
speak of bayesian. The signal itself can be seen as a trajectory of a stochastic
process2. Robustness may also be refered to because the perturbation is not
exactly known. A lot of recent papers use wavelets3.

Literature is prolific and difficult to understand. The words mask, sharp-
ening are keys on the Net, as also filtration and denoising. An astonishing
algorithm is due to P.H. van Cittert: see Wikipedia (German) [J, VC]. A
paper with an heralding title, which quotes van Cittert, and illustrate the
interest to the question outside of the purely mathematical world is [Bi].

We will give some calculi with the space Z (dimension 1) and refind the
threshhold 1

2 highlighted by C. Duval [D] (see Section 6).
I thank Manuel Monteiro Marques for his constant encouragements and

Paul Raynaud de Fitte for his invaluable bibliographical helps.

2 Convolution. Notations. Zero divisors.

Convolution and Fourier transform have as framework Rd (which is its own
dual group), or Zd and its dual group4 Td (maybe the groups Z/nZ?). When
µ and ν are bounded measures on Rd, their convolution product, denoted by
µ ∗ ν, is the image (pushforward5) by (x, y) 7→ x+ y of their product µ⊗ ν
(cf. the sum of independant random variables in Probability). For Lebesgue
integrable functions on Rd, their convolution product is classically

f ∗ g : x 7→
∫
Rd

f(x− y) g(y) dy .

The excellent paper by K.A. Ross [R] examines mainly convolution of L1

functions.
Concerning convolution of distributions, L. Schwartz begins by the case

of two when one of them has compact support. Then he proves [S, vol.2,
Th.VII p.14] that the convolution of a finite number of distributions which
have all, except one, compact supports is associative et commutative and
then [S, vol.2, ch.6 §5 p.26] moves to more general situations. He proves that,
in dimension d = 1, the convolution algebra D′+ (the set of distributions with
supports limited on left) has no zero divisors [S, vol.2, ch.6 Th.XIV p.29].

2 Cf. the Wiener filter, I learned in R. Pallu de La Barrière [PB].
3 Using the Fourier transform is tempting but disappointing.
4 Cf. Fourier series.
5 Cf. the writing µ ∗ ν = S#(µ⊗ ν) where S denotes the sum.
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The same result holds for D′− (the set of distributions with supports limited
on right).

The unit mass in 0, δ0, is always a neutral element and convolution by δx
(x ∈ Rd) amounts to translation by the vector x. Uniqueness of a possible
inverse holds when one works in a subspace where associativity holds (see (1)
hereafter). We will see cases where several inverses do coexist (Theorem 1).

Let us show that δx has as unique inverse δ−x (who doubts it?). Suppose
H is another distribution inverse of δx. Among the three distributions δx,
δ−x and H, two have compact support, hence associativity holds and

(1) H = H ∗ δ0 = H ∗ (δx ∗ δ−x) = (H ∗ δx) ∗ δ−x = δ0 ∗ δ−x = δ−x .

When dealing with Z and measures such as µ =
∑

n∈Z xn δn, or ν =∑
n∈Z yn δn, the point of view of convolution is to consider the function

n 7→ xn defined on Z (resp. n 7→ yn). The convolution of µ and ν returns to
the convolution z := x∗y where zn =

∑
k∈Z xn−k yk. Next h will equivalently

denote a measure or a function on Z.

Examples of zero divisors.

1) With R let consider the gate function h = 1[−1,1]. Then

h ∗ 1∪n∈Z[2n,2n+1] = h ∗
(1

2
1R

)
hence f 7→ h ∗ f is not injective on L∞(R), and one has a zero divisor:

h ∗
(
1∪n∈Z[2n,2n+1] −

1

2
1R

)
= 0 .

2) With Z, take h := 1
2 δ0 + 1

2 δ1 or h := 1
4 δ−1 + 1

2 δ0 + 1
4 δ1. Then there holds

(2) h ∗ 12Z = h ∗
(1

2
1Z

)
,

hence f 7→ h ∗ f is not injective on `∞(Z), and one has the zero divisor:

h ∗
(
12Z −

1

2
1Z

)
= 0 .
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3 Convolution and inverse, particular cases.

Let us begin by h = a δ0 + (1− a) δ1 (a ∈ ]0, 1[) (a kind of “gate function”).

Lemma 1 Let a ∈ ]0, 1[ and h = a δ0 + (1− a) δ1. Then an inverse of h in
D′+(R) is6

(3) J =
1

a
δ0 −

1− a
a2

δ1 +
(1− a)2

a3
δ2 + . . .

(the limit is for the weak topology σ(D′,D))

Proof. Indeed

h ∗ 1

a

k∑
n=0

[
−1− a

a

]n
δn = δ0 + (−1)k

[1− a
a

]k+1
δk+1

→ δ0

because for any αn, αn δn → 0 in the topology σ(D′,D) when n→∞. �

Lemma 2 An inverse of h in D′−(R) is

(4)
1

1− a
δ−1 −

a

(1− a)2
δ−2 +

a2

(1− a)3
δ−3 −

a3

(1− a)4
δ−4 + . . .

(the limit still for σ(D′,D))

Proof. One can write

h = (1− a) δ1 ∗ (δ0 +
a

1− a
δ−1) .

Then (1−a) δ1 admits the inverse 1
1−a δ−1 and for the second factor one can

develop “on left” as in the preceding lemma. �

Theorem 1 The distribution 1
2 (δ0 + δ1) on R admits several inverses in D′

with respect to convolution (the limits are for σ(D′,D)):

(5) J1 = 2 lim
k→∞

k∑
n=0

(−1)nδn = 2 (δ0 − δ1 + δ2 − δ3 + . . .) ,

6 Cf. the known formula (1 + x)−1 = 1− x+ x2 − x3 + . . . for x ∈ R.
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J2 = 2 lim
k→∞

k∑
n=1

(−1)n−1δ−n = 2 (δ−1 − δ−2 + δ−3 − δ−4 + . . .)

and specially H = 1
2 (J1 + J2) i.e.

(6) H = . . .− δ−4 + δ−3 − δ−2 + δ−1 + δ0 − δ1 + δ2 − δ3 + . . .

Moreover for any f ∈ R(Z) (the space of real sequences on Z with compact
supports)

(f ∗ h) ∗H = f .

Remarks. For any λ ∈ R, λJ1 + (1 − λ) J2 is also an inverse of h. And
J1 − J2 forms with h a couple of zero divisors.

Proof. The lemmas imply the assertions about inverses. The last formula
follows from the fact that f and h have compact supports, hence (f ∗h)∗H =
f ∗ (h ∗H) = f ∗ δ0. �

Now we turn to a measure carried by {−1, 0, 1}, still positive with total
mass 1. With the parameter a ∈

]
1
2 , 1
[

(7) h :=
1− a

2
δ−1 + a δ0 +

1− a
2

δ1

or, with the parameter b = 1−a
2 ∈

]
0, 14
[

which will be often better suited,

h := b δ−1 + (1− 2b) δ0 + b δ1 .

Lemma 3 Let b ∈
]
0, 14
[
. Then

λ =
1

2b

[
2b− 1 +

√
1− 4b

]
belongs to ]−1, 0[, tends to 0 if b→ 0, and tends to −1 if b→ 1/4.

Proof. Elementarily λ is a root of the equation λ2 + 1−2b
b λ+ 1 = 0. One

has λ ≤ 0 because

2 b− 1 +
√

1− 4b ≤ 0⇐⇒
√

1− 4b ≤ 1− 2 b

⇐⇒ 1− 4b ≤ (1− 2b)2

⇐⇒ 1− 4b ≤ 1− 4b+ 4b2

and λ > −1 because

2b− 1 +
√

1− 4b > −2b⇐⇒
√

1− 4b > 1− 4b

which holds, since on ]0, 1[,
√
x is > x. The convergences are easy. �
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Theorem 2 Let h given by (7)

h :=
1− a

2
δ−1 + a δ0 +

1− a
2

δ1 .

Let c defined by

∀n ∈ Z, cn = λ|n|
(√

1− 4b
)−1

.

The cn are alternatively > 0 and < 0 and
∑

n∈Z cn = 1. The measure (or
sequence) c is an inverse of h, that is h∗c = δ0. Moreover for any f ∈ `∞(Z)

(f ∗ h) ∗ c = f .

Remark. Since −1 < λ < 0, c considered as a function oscillates as the
famous cardinal sine function: sincx = sinx

x (cf. also the mexican hat). This
seems quite general. For another comment see Section 6.

Proof. 1) One has∑
n∈Z

cn = c0 + 2
∑
n≥1

cn

= c0

(
1 + 2

∑
n≥1

λn
)

= c0

(
1 + 2

λ

1− λ

)
=

1√
1− 4b

1 + λ

1− λ

=
1√

1− 4b

4b− 1 +
√

1− 4b

1−
√

1− 4b

= 1 .

2) Firstly

(h ∗ c)n =
∑
i∈Z

h(n− i) ci =
∑
i∈Z

h(i) cn−i .
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For n = 0 this gives

(h ∗ c)0 = h(−1) c1 + h(0) c0 + h(1) c−1

= b
λ√

1− 4b
+ (1− 2b)

1√
1− 4b

+ b
λ√

1− 4b

=
1√

1− 4b
[2b λ+ 1− 2 b]

=
1√

1− 4b

[
2b− 1 +

√
1− 4b+ 1− 2 b

]
= 1 .

For n ≥ 1 this gives

(h ∗ c)0 = h(−1) cn+1 + h(0) cn + h(1) cn−1

= b (cn−1 + cn+1) + (1− 2b) cn

= c0 [b λn−1 + b λn+1 + (1− 2b)λn]

=
λn−1√
1− 4b

[b+ (1− 2b)λ+ bλ2]

= 0

because λ2 + 1−2b
b λ+ 1 = 0.

3) As for (f ∗ h) ∗ c, the functions are respectively, bounded for f , with
compact support for h, integrable for c (convergent sum). So associativity
holds. �

4 Illustration (pictures on Z).

A monochrome photographic image can be modelized by a (measurable)
function f : R2 → [0, 1], f measuring the brightness.

We will expose some examples with f : Z → [0, 1], that is a one dimen-
sional picture formed from pixels. So the basic space is `∞(Z). Another
natural space is R(Z) that is the space of real sequences on Z with compact
supports (this is Bourbaki’s notation); it is a natural space since pictures do
have compact supports. Other vector spaces could be considered in abstract
studies (p ∈ ]1,∞[):

R(Z) ⊂ `1(Z) ⊂ `p(Z) ⊂ c0(Z) ⊂ `∞(Z) ⊂ RZ .
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As measures spaces, RZ ∼ M(Z) (the space of all measures on Z) and
`1(Z) ∼Mb(Z) (the space of all bounded measures on Z).

Let us consider the linear map

A :=

{
RZ −→ RZ

(xn)n∈Z 7→ (yn)n∈Z where yn = 1
2 (xn−1 + xn) .

Applying A is the same thing as convolution by the “gate function” h =
1
2 (δ0 + δ1). It is not one-to-one, its kernel being (elementary verification)

kerA = {λ
(
(−1)n

)
n∈Z ; λ ∈ R} = {λ (12Z − 12Z+1) ; λ ∈ R} .

This kernel expression holds too with the space `∞(Z). But by restricting
the linear transformation A to c0(Z) or to a smaller subspace, the kernel
becomes {0} and the map x 7→ Ax is then one-to-one.

Here comes our main observations:
— x = 1

2 1Z is perfect grey ;
— xn = 1 if n is even, 0 otherwise is macroscopically grey ;
— the same ones on, for example {0, . . . , 999}, will reveal to have quite
different properties.

Pictures belonging to `∞(Z). Let the convolution by h be the blurring
action. Then 12Z ∗ h and 1

2 1Z (= [12 1Z] ∗ h) are identical. Inversion of A
and deconvolution are impossible.

Pictures belonging to R(Z). Then A is one-to-one (its kernel, kerA,
vanishes). If x ∈ R(Z) the blurred picture h ∗ x has also compact support
and convolution with H defined in (6) is possible. Thus

(8) (x ∗ h) ∗H = x ∗ (h ∗H) = x ∗ δ0 = x .

But some different x can give very closed blurred pictures. Precisely take

xn =

{
1 if n is even and 0 ≤ n ≤ 998

0 otherwise

(there are 500 pixels with value 1). The blurring gives the picture y = h ∗ x
with

(9) yn =
1

2
xn +

1

2
xn−1 =

1

2
for 0 ≤ n ≤ 999 and 0 otherwise

(there are 1000 pixels with value 1/2).
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But the almost perfect grey picture x̃ = 1
2 1{0,999} (it is grey on a large

interval) is blurred into ỹ where

(10) ỹn =


1
2 if 1 ≤ n ≤ 999
1
4 if n = 0 or 1000

0 otherwise

which is very closed to y obtained in (9). This illustrates the ill-posedness
of the inversion problem7. Note also that despite the possibility of decon-
volution (8), H is an unbounded measure with unbounded support. This
inversion is in some sense academical.

Practitioners use high-pass filters under the form of convolution with a
small supported mask (look on the Net at “sharpening”), for example in
dimension 2 a measure supported by {−1, 0, 1} × {−1, 0, 1} as maybe

0 -1 0

-1 5 -1

0 -1 0

or

-1 -1 -1

-1 9 -1

-1 -1 -1

the sum of all coefficients being 1.

5 Exercices.

When the picture x or x̃ belong to R(Z), deconvolution works theoretically
perfectly.

Case of macroscopic grey. As for y = A(x) given in (9) the formula∑
k∈Z

ykHn−k

(Hm is the m-th term of H defined in (6)) gives exactly xn. This could be
an exercice. The inverse J1 (cf. (5)) can equally do the job, with∑

k∈Z
yk J1,n−k where J1,m = 2 (−1)m for m ≥ 0 .

7 In this example there is a bad behavior as analysed in sampling theory.
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Case of almost perfect grey. As for ỹ = A(x̃) given in (10) the
formulas ∑

k∈Z
ỹkHn−k or

∑
k∈Z

ỹk J1,n−k

give exactly x̃n.

6 About the threshold 1/2.

In [D] C. Duval studies convolution by a δ0 + α g(x) dx imposing a > 1
2 .

We refinded this in Lemma 1 where the multiplicative factor −1− a
a

has

absolute value < 1 if and only if a > 1
2 .

We refinded again this in Theorem 2 where the multiplicative factor λ
belongs to ]−1, 0[ and badly tends to −1 when a↘ 1

2 (equivalently b↗ 1
4).
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