Does deconvolution exist?

Michel Valadier

October 23th 2018

Abstract

Blurring of a photographic image by a wrong focus can be modeled by convolution. This paper discusses some points for the inverse operation with particular interest on the set of integers \mathbb{Z}.

MSC2010: 65R30 (Improperly posed problems), 94A08 (Image processing).

1 Introduction.

Briefly a problem is ill-posed if there is a "bad" transformation A ("signal" \mapsto "blurred signal" for example) and one tries recovering the preimage of any y, expecting to find an x such that $A x=y$. Difficulties could lie in: A is not one-to-one, or very different initial points may have very closed image (see Section 4), or (frequently this happens simultaneously) the map A is not onto.

Photographic images often present blurring, for example due to a wrong focus setting. Several other defects due to different causes are possible (cf. [Be]). Defect of focus is roughly equivalent to convolution of the image source with the brightness of the image of one point light in 0^{1}. Numerous papers use the word deconvolution. Is it more than a word? Surely this belongs to the class of ill-posed problems (see [TA, Ch.IV pp.91-115]).

Several authors add stochastic component. There is a clear reason: when the map "signal" \mapsto "blurred signal" is not onto (this may highly depends on the functional space under consideration), finding a preimage to any point

[^0]in the target space of A needs some stochastic adjustment. Many papers speak of bayesian. The signal itself can be seen as a trajectory of a stochastic process ${ }^{2}$. Robustness may also be refered to because the perturbation is not exactly known. A lot of recent papers use wavelets ${ }^{3}$.

Literature is prolific and difficult to understand. The words mask, sharpening are keys on the Net, as also filtration and denoising. An astonishing algorithm is due to P.H. van Cittert: see Wikipedia (German) [J, VC]. A paper with an heralding title, which quotes van Cittert, and illustrate the interest to the question outside of the purely mathematical world is [Bi].

We will give some calculi with the space \mathbb{Z} (dimension 1) and refind the threshhold $\frac{1}{2}$ highlighted by C. Duval [D] (see Section 6).

I thank Manuel Monteiro Marques for his constant encouragements and Paul Raynaud de Fitte for his invaluable bibliographical helps.

2 Convolution. Notations. Zero divisors.

Convolution and Fourier transform have as framework \mathbb{R}^{d} (which is its own dual group), or \mathbb{Z}^{d} and its dual group ${ }^{4} \mathbb{T}^{d}$ (maybe the groups $\mathbb{Z} / n \mathbb{Z}$?). When μ and ν are bounded measures on \mathbb{R}^{d}, their convolution product, denoted by $\mu * \nu$, is the image (pushforward ${ }^{5}$) by $(x, y) \mapsto x+y$ of their product $\mu \otimes \nu$ (cf. the sum of independant random variables in Probability). For Lebesgue integrable functions on \mathbb{R}^{d}, their convolution product is classically

$$
f * g: x \mapsto \int_{\mathbb{R}^{d}} f(x-y) g(y) d y
$$

The excellent paper by K.A. Ross $[R]$ examines mainly convolution of L^{1} functions.

Concerning convolution of distributions, L. Schwartz begins by the case of two when one of them has compact support. Then he proves $[\mathrm{S}, \mathrm{vol} .2$, Th.VII p.14] that the convolution of a finite number of distributions which have all, except one, compact supports is associative et commutative and then [S, vol.2, ch. $6 \S 5$ p.26] moves to more general situations. He proves that, in dimension $d=1$, the convolution algebra \mathcal{D}_{+}^{\prime} (the set of distributions with supports limited on left) has no zero divisors [S, vol.2, ch. 6 Th.XIV p.29].

[^1]The same result holds for \mathcal{D}_{-}^{\prime} (the set of distributions with supports limited on right).

The unit mass in $0, \delta_{0}$, is always a neutral element and convolution by δ_{x} $\left(x \in \mathbb{R}^{d}\right)$ amounts to translation by the vector x. Uniqueness of a possible inverse holds when one works in a subspace where associativity holds (see (1) hereafter). We will see cases where several inverses do coexist (Theorem 1).

Let us show that δ_{x} has as unique inverse δ_{-x} (who doubts it?). Suppose H is another distribution inverse of δ_{x}. Among the three distributions δ_{x}, δ_{-x} and H, two have compact support, hence associativity holds and

$$
\begin{equation*}
H=H * \delta_{0}=H *\left(\delta_{x} * \delta_{-x}\right)=\left(H * \delta_{x}\right) * \delta_{-x}=\delta_{0} * \delta_{-x}=\delta_{-x} \tag{1}
\end{equation*}
$$

When dealing with \mathbb{Z} and measures such as $\mu=\sum_{n \in \mathbb{Z}} x_{n} \delta_{n}$, or $\nu=$ $\sum_{n \in \mathbb{Z}} y_{n} \delta_{n}$, the point of view of convolution is to consider the function $n \mapsto x_{n}$ defined on \mathbb{Z} (resp. $n \mapsto y_{n}$). The convolution of μ and ν returns to the convolution $z:=x * y$ where $z_{n}=\sum_{k \in \mathbb{Z}} x_{n-k} y_{k}$. Next h will equivalently denote a measure or a function on \mathbb{Z}.

Examples of zero divisors.

1) With \mathbb{R} let consider the gate function $h=\mathbf{1}_{[-1,1]}$. Then

$$
h * \mathbf{1}_{\cup_{n \in \mathbb{Z}}[2 n, 2 n+1]}=h *\left(\frac{1}{2} \mathbf{1}_{\mathbb{R}}\right)
$$

hence $f \mapsto h * f$ is not injective on $L^{\infty}(\mathbb{R})$, and one has a zero divisor:

$$
h *\left(\mathbf{1}_{\cup_{n \in \mathbb{Z}}[2 n, 2 n+1]}-\frac{1}{2} \mathbf{1}_{\mathbb{R}}\right)=0 .
$$

2) With \mathbb{Z}, take $h:=\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$ or $h:=\frac{1}{4} \delta_{-1}+\frac{1}{2} \delta_{0}+\frac{1}{4} \delta_{1}$. Then there holds

$$
\begin{equation*}
h * \mathbf{1}_{2 \mathbb{Z}}=h *\left(\frac{1}{2} \mathbf{1}_{\mathbb{Z}}\right), \tag{2}
\end{equation*}
$$

hence $f \mapsto h * f$ is not injective on $\ell^{\infty}(\mathbb{Z})$, and one has the zero divisor:

$$
h *\left(\mathbf{1}_{2 \mathbb{Z}}-\frac{1}{2} \mathbf{1}_{\mathbb{Z}}\right)=0 .
$$

3 Convolution and inverse, particular cases.

Let us begin by $h=a \delta_{0}+(1-a) \delta_{1}(a \in] 0,1[)$ (a kind of "gate function").
Lemma 1 Let $a \in] 0,1\left[\right.$ and $h=a \delta_{0}+(1-a) \delta_{1}$. Then an inverse of h in $\mathcal{D}_{+}^{\prime}(\mathbb{R}) i s^{6}$

$$
\begin{equation*}
J=\frac{1}{a} \delta_{0}-\frac{1-a}{a^{2}} \delta_{1}+\frac{(1-a)^{2}}{a^{3}} \delta_{2}+\ldots \tag{3}
\end{equation*}
$$

(the limit is for the weak topology $\sigma\left(\mathcal{D}^{\prime}, \mathcal{D}\right)$)
Proof. Indeed

$$
\begin{aligned}
h * \frac{1}{a} \sum_{n=0}^{k}\left[-\frac{1-a}{a}\right]^{n} \delta_{n} & =\delta_{0}+(-1)^{k}\left[\frac{1-a}{a}\right]^{k+1} \delta_{k+1} \\
& \rightarrow \delta_{0}
\end{aligned}
$$

because for any $\alpha_{n}, \alpha_{n} \delta_{n} \rightarrow 0$ in the topology $\sigma\left(\mathcal{D}^{\prime}, \mathcal{D}\right)$ when $n \rightarrow \infty$.
Lemma 2 An inverse of h in $\mathcal{D}_{-}^{\prime}(\mathbb{R})$ is

$$
\begin{equation*}
\frac{1}{1-a} \delta_{-1}-\frac{a}{(1-a)^{2}} \delta_{-2}+\frac{a^{2}}{(1-a)^{3}} \delta_{-3}-\frac{a^{3}}{(1-a)^{4}} \delta_{-4}+\ldots \tag{4}
\end{equation*}
$$

(the limit still for $\sigma\left(\mathcal{D}^{\prime}, \mathcal{D}\right)$)
Proof. One can write

$$
h=(1-a) \delta_{1} *\left(\delta_{0}+\frac{a}{1-a} \delta_{-1}\right) .
$$

Then $(1-a) \delta_{1}$ admits the inverse $\frac{1}{1-a} \delta_{-1}$ and for the second factor one can develop "on left" as in the preceding lemma.

Theorem 1 The distribution $\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$ on \mathbb{R} admits several inverses in \mathcal{D}^{\prime} with respect to convolution (the limits are for $\sigma\left(\mathcal{D}^{\prime}, \mathcal{D}\right)$):

$$
\begin{equation*}
J_{1}=2 \lim _{k \rightarrow \infty} \sum_{n=0}^{k}(-1)^{n} \delta_{n}=2\left(\delta_{0}-\delta_{1}+\delta_{2}-\delta_{3}+\ldots\right), \tag{5}
\end{equation*}
$$

[^2]$$
J_{2}=2 \lim _{k \rightarrow \infty} \sum_{n=1}^{k}(-1)^{n-1} \delta_{-n}=2\left(\delta_{-1}-\delta_{-2}+\delta_{-3}-\delta_{-4}+\ldots\right)
$$
and specially $H=\frac{1}{2}\left(J_{1}+J_{2}\right)$ i.e.
\[

$$
\begin{equation*}
H=\ldots-\delta_{-4}+\delta_{-3}-\delta_{-2}+\delta_{-1}+\delta_{0}-\delta_{1}+\delta_{2}-\delta_{3}+\ldots \tag{6}
\end{equation*}
$$

\]

Moreover for any $f \in \mathbb{R}^{(\mathbb{Z})}$ (the space of real sequences on \mathbb{Z} with compact supports)

$$
(f * h) * H=f .
$$

Remarks. For any $\lambda \in \mathbb{R}, \lambda J_{1}+(1-\lambda) J_{2}$ is also an inverse of h. And $J_{1}-J_{2}$ forms with h a couple of zero divisors.

Proof. The lemmas imply the assertions about inverses. The last formula follows from the fact that f and h have compact supports, hence $(f * h) * H=$ $f *(h * H)=f * \delta_{0}$.

Now we turn to a measure carried by $\{-1,0,1\}$, still positive with total mass 1 . With the parameter $a \in] \frac{1}{2}, 1[$

$$
\begin{equation*}
h:=\frac{1-a}{2} \delta_{-1}+a \delta_{0}+\frac{1-a}{2} \delta_{1} \tag{7}
\end{equation*}
$$

or, with the parameter $\left.b=\frac{1-a}{2} \in\right] 0, \frac{1}{4}[$ which will be often better suited,

$$
h:=b \delta_{-1}+(1-2 b) \delta_{0}+b \delta_{1} .
$$

Lemma 3 Let $b \in] 0, \frac{1}{4}[$. Then

$$
\lambda=\frac{1}{2 b}[2 b-1+\sqrt{1-4 b}]
$$

belongs to $]-1,0[$, tends to 0 if $b \rightarrow 0$, and tends to -1 if $b \rightarrow 1 / 4$.
Proof. Elementarily λ is a root of the equation $\lambda^{2}+\frac{1-2 b}{b} \lambda+1=0$. One has $\lambda \leq 0$ because

$$
\begin{aligned}
2 b-1+\sqrt{1-4 b} \leq 0 & \Longleftrightarrow \sqrt{1-4 b} \leq 1-2 b \\
& \Longleftrightarrow 1-4 b \leq(1-2 b)^{2} \\
& \Longleftrightarrow 1-4 b \leq 1-4 b+4 b^{2}
\end{aligned}
$$

and $\lambda>-1$ because

$$
2 b-1+\sqrt{1-4 b}>-2 b \Longleftrightarrow \sqrt{1-4 b}>1-4 b
$$

which holds, since on $] 0,1[, \sqrt{x}$ is $>x$. The convergences are easy.

Theorem 2 Let h given by (7)

$$
h:=\frac{1-a}{2} \delta_{-1}+a \delta_{0}+\frac{1-a}{2} \delta_{1}
$$

Let c defined by

$$
\forall n \in \mathbb{Z}, c_{n}=\lambda^{|n|}(\sqrt{1-4 b})^{-1}
$$

The c_{n} are alternatively >0 and <0 and $\sum_{n \in \mathbb{Z}} c_{n}=1$. The measure (or sequence) c is an inverse of h, that is $h * c=\delta_{0}$. Moreover for any $f \in \ell^{\infty}(\mathbb{Z})$

$$
(f * h) * c=f
$$

REmARK. Since $-1<\lambda<0, c$ considered as a function oscillates as the famous cardinal sine function: $\operatorname{sinc} x=\frac{\sin x}{x}$ (cf. also the mexican hat). This seems quite general. For another comment see Section 6.

Proof. 1) One has

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} c_{n} & =c_{0}+2 \sum_{n \geq 1} c_{n} \\
& =c_{0}\left(1+2 \sum_{n \geq 1} \lambda^{n}\right) \\
& =c_{0}\left(1+2 \frac{\lambda}{1-\lambda}\right) \\
& =\frac{1}{\sqrt{1-4 b}} \frac{1+\lambda}{1-\lambda} \\
& =\frac{1}{\sqrt{1-4 b}} \frac{4 b-1+\sqrt{1-4 b}}{1-\sqrt{1-4 b}} \\
& =1
\end{aligned}
$$

2) Firstly

$$
(h * c)_{n}=\sum_{i \in \mathbb{Z}} h(n-i) c_{i}=\sum_{i \in \mathbb{Z}} h(i) c_{n-i}
$$

For $n=0$ this gives

$$
\begin{aligned}
(h * c)_{0} & =h(-1) c_{1}+h(0) c_{0}+h(1) c_{-1} \\
& =b \frac{\lambda}{\sqrt{1-4 b}}+(1-2 b) \frac{1}{\sqrt{1-4 b}}+b \frac{\lambda}{\sqrt{1-4 b}} \\
& =\frac{1}{\sqrt{1-4 b}}[2 b \lambda+1-2 b] \\
& =\frac{1}{\sqrt{1-4 b}}[2 b-1+\sqrt{1-4 b}+1-2 b] \\
& =1
\end{aligned}
$$

For $n \geq 1$ this gives

$$
\begin{aligned}
(h * c)_{0} & =h(-1) c_{n+1}+h(0) c_{n}+h(1) c_{n-1} \\
& =b\left(c_{n-1}+c_{n+1}\right)+(1-2 b) c_{n} \\
& =c_{0}\left[b \lambda^{n-1}+b \lambda^{n+1}+(1-2 b) \lambda^{n}\right] \\
& =\frac{\lambda^{n-1}}{\sqrt{1-4 b}}\left[b+(1-2 b) \lambda+b \lambda^{2}\right] \\
& =0
\end{aligned}
$$

because $\lambda^{2}+\frac{1-2 b}{b} \lambda+1=0$.
3) As for $(f * h) * c$, the functions are respectively, bounded for f, with compact support for h, integrable for c (convergent sum). So associativity holds.

4 Illustration (pictures on \mathbb{Z}).

A monochrome photographic image can be modelized by a (measurable) function $f: \mathbb{R}^{2} \rightarrow[0,1], f$ measuring the brightness.

We will expose some examples with $f: \mathbb{Z} \rightarrow[0,1]$, that is a one dimensional picture formed from pixels. So the basic space is $\ell^{\infty}(\mathbb{Z})$. Another natural space is $\mathbb{R}^{(\mathbb{Z})}$ that is the space of real sequences on \mathbb{Z} with compact supports (this is Bourbaki's notation); it is a natural space since pictures do have compact supports. Other vector spaces could be considered in abstract studies $(p \in] 1, \infty[)$:

$$
\mathbb{R}^{(\mathbb{Z})} \subset \ell^{1}(\mathbb{Z}) \subset \ell^{p}(\mathbb{Z}) \subset c_{0}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z}) \subset \mathbb{R}^{\mathbb{Z}}
$$

As measures spaces, $\mathbb{R}^{\mathbb{Z}} \sim \mathcal{M}(\mathbb{Z})$ (the space of all measures on \mathbb{Z}) and $\ell^{1}(\mathbb{Z}) \sim \mathcal{M}^{b}(\mathbb{Z})$ (the space of all bounded measures on \mathbb{Z}).

Let us consider the linear map

$$
A:=\left\{\begin{array}{l}
\mathbb{R}^{\mathbb{Z}} \longrightarrow \mathbb{R}^{\mathbb{Z}} \\
\left(x_{n}\right)_{n \in \mathbb{Z}} \mapsto\left(y_{n}\right)_{n \in \mathbb{Z}} \quad \text { where } \quad y_{n}=\frac{1}{2}\left(x_{n-1}+x_{n}\right) .
\end{array}\right.
$$

Applying A is the same thing as convolution by the "gate function" $h=$ $\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$. It is not one-to-one, its kernel being (elementary verification)

$$
\operatorname{ker} A=\left\{\lambda\left((-1)^{n}\right)_{n \in \mathbb{Z}} ; \lambda \in \mathbb{R}\right\}=\left\{\lambda\left(\mathbf{1}_{2 \mathbb{Z}}-\mathbf{1}_{2 \mathbb{Z}+1}\right) ; \lambda \in \mathbb{R}\right\} .
$$

This kernel expression holds too with the space $\ell^{\infty}(\mathbb{Z})$. But by restricting the linear transformation A to $c_{0}(\mathbb{Z})$ or to a smaller subspace, the kernel becomes $\{0\}$ and the map $x \mapsto A x$ is then one-to-one.

Here comes our main observations:

- $x=\frac{1}{2} \mathbf{1}_{\mathbb{Z}}$ is perfect grey;
- $x_{n}=1$ if n is even, 0 otherwise is macroscopically grey;
- the same ones on, for example $\{0, \ldots, 999\}$, will reveal to have quite different properties.

Pictures belonging to $\ell^{\infty}(\mathbb{Z})$. Let the convolution by h be the blurring action. Then $\mathbf{1}_{2 \mathbb{Z}} * h$ and $\frac{1}{2} \mathbf{1}_{\mathbb{Z}}\left(=\left[\frac{1}{2} \mathbf{1}_{\mathbb{Z}}\right] * h\right)$ are identical. Inversion of A and deconvolution are impossible.
Pictures belonging to $\mathbb{R}^{(\mathbb{Z})}$. Then A is one-to-one (its kernel, $\operatorname{ker} A$, vanishes). If $x \in \mathbb{R}^{(\mathbb{Z})}$ the blurred picture $h * x$ has also compact support and convolution with H defined in (6) is possible. Thus

$$
\begin{equation*}
(x * h) * H=x *(h * H)=x * \delta_{0}=x . \tag{8}
\end{equation*}
$$

But some different x can give very closed blurred pictures. Precisely take

$$
x_{n}= \begin{cases}1 & \text { if } n \text { is even and } 0 \leq n \leq 998 \\ 0 & \text { otherwise }\end{cases}
$$

(there are 500 pixels with value 1). The blurring gives the picture $y=h * x$ with

$$
\begin{equation*}
y_{n}=\frac{1}{2} x_{n}+\frac{1}{2} x_{n-1}=\frac{1}{2} \text { for } 0 \leq n \leq 999 \text { and } 0 \text { otherwise } \tag{9}
\end{equation*}
$$

(there are 1000 pixels with value $1 / 2$).

But the almost perfect grey picture $\tilde{x}=\frac{1}{2} \mathbf{1}_{\{0,999\}}$ (it is grey on a large interval) is blurred into \tilde{y} where

$$
\tilde{y}_{n}= \begin{cases}\frac{1}{2} & \text { if } 1 \leq n \leq 999 \tag{10}\\ \frac{1}{4} & \text { if } n=0 \text { or } 1000 \\ 0 & \text { otherwise }\end{cases}
$$

which is very closed to y obtained in (9). This illustrates the ill-posedness of the inversion problem ${ }^{7}$. Note also that despite the possibility of deconvolution (8), H is an unbounded measure with unbounded support. This inversion is in some sense academical.

Practitioners use high-pass filters under the form of convolution with a small supported mask (look on the Net at "sharpening"), for example in dimension 2 a measure supported by $\{-1,0,1\} \times\{-1,0,1\}$ as maybe

0	-1	0
-1	5	-1
0	-1	0

or

-1	-1	-1
-1	9	-1
-1	-1	-1

the sum of all coefficients being 1 .

5 Exercices.

When the picture x or \tilde{x} belong to $\mathbb{R}^{(\mathbb{Z})}$, deconvolution works theoretically perfectly.
Case of macroscopic grey. As for $y=A(x)$ given in (9) the formula

$$
\sum_{k \in \mathbb{Z}} y_{k} H_{n-k}
$$

(H_{m} is the m-th term of H defined in (6)) gives exactly x_{n}. This could be an exercice. The inverse J_{1} (cf. (5)) can equally do the job, with

$$
\sum_{k \in \mathbb{Z}} y_{k} J_{1, n-k} \quad \text { where } \quad J_{1, m}=2(-1)^{m} \text { for } m \geq 0
$$

[^3]CASE OF ALMOST PERFECT GREY. As for $\tilde{y}=A(\tilde{x})$ given in (10) the formulas

$$
\sum_{k \in \mathbb{Z}} \tilde{y}_{k} H_{n-k} \quad \text { or } \quad \sum_{k \in \mathbb{Z}} \tilde{y}_{k} J_{1, n-k}
$$

give exactly \tilde{x}_{n}.

6 About the threshold $1 / 2$.

In [D] C. Duval studies convolution by $a \delta_{0}+\alpha g(x) d x$ imposing $a>\frac{1}{2}$.
We refinded this in Lemma 1 where the multiplicative factor $-\frac{1-a}{a}$ has absolute value <1 if and only if $a>\frac{1}{2}$.

We refinded again this in Theorem 2 where the multiplicative factor λ belongs to $]-1,0\left[\right.$ and badly tends to -1 when $a \searrow \frac{1}{2}$ (equivalently $b \nearrow \frac{1}{4}$).

References

[Be] Bergounioux, M., Quelques méthodes mathématiques pour le traitement d'image, Cours de DEA, Université d'Orléans (2008) 110 pages. https://cel.archives-ouvertes.fr/cel-00125868v4/document
[Bi] Biraud, Y.G., Les méthodes de déconvolution et leurs limitations fondamentales, Revue de Physique Appliquée 11 (1976) 203-214.
https://hal.archives-ouvertes.fr/jpa-00244050/document
[D] Duval, C., A note on a fixed point method for deconvolution, Statistics 51 (2017) 347-362.
https://hal.archives-ouvertes.fr/hal-01199599/document
[J] Jähne, B., Digitale Bildverarbeitung, Springer, Berlin, 2005. From Wikipedia the deconvolution algorithm of Van Cittert is explained in this book, see:
https://de.wikipedia.org/wiki/Van-Cittert-Dekonvolution
[PB] Pallu de La Barrière, R., Cours d'automatique théorique, Dunod, Paris, 1966.
[R] Ross, K.A., A Trip from Classical to Abstract Fourier Analysis, Notice of the AMS 61 (2014) 1032-1038.
[S] Schwartz, L., Théorie des distributions, vol. 1 et 2, Hermann, Paris, 1957 et 1959 (first edition 1950/51).
[TA] Tikhonov, A.N. \& Arsénine V.J., Méthodes de résolution des problèmes mal posés, Éditions Mir, Moscou, 1976 (firstly published in Russian in 1974; in English: A.N. Tikhonov \& V.Y. Arsenin, Solutions of ill-posed problems, John Wiley \& Sons, New York, 1977).
[VC] van Cittert, P.H. Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II, Zeitschrift für Physik 69 (1931) 298308.

[^0]: ${ }^{1}$ The density could be $k \mathbf{1}_{B(0, r)}$ where $r>0$ is a radius and $k=\left(\pi r^{2}\right)^{-1}$. Question in dimension 2 and with the Euclidean norm: is it a zero divisor for convolution? We will see (Section 2) that in dimension 1 we do have a zero divisor.

[^1]: ${ }^{2}$ Cf. the Wiener filter, I learned in R. Pallu de La Barrière [PB].
 ${ }^{3}$ Using the Fourier transform is tempting but disappointing.
 ${ }^{4}$ Cf. Fourier series.
 ${ }^{5}$ Cf. the writing $\mu * \nu=S_{\#}(\mu \otimes \nu)$ where S denotes the sum.

[^2]: ${ }^{6}$ Cf. the known formula $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots$ for $x \in \mathbb{R}$.

[^3]: ${ }^{7}$ In this example there is a bad behavior as analysed in sampling theory.

